Hotel Booking Cancellation Is Provided A Substantial Effects On Demand Management Decisions In The Hospitality Industry. The Goal Of This Work Is To Investigate The Effects Of Different Machine Learning Methods In Hotel Booking Cancellation Process. In This Work, We Gathered A Hotel Booking Cancellation Dataset FromKaggle Data Repository. Then, Different Feature Transformation Techniques Were Implemented Into Primary Dataset And Generate Transformed Datasets. Further, We Reduced Insignificant Variables Using Feature Selection Methods. Therefore, Various Classifiers Were Employed Into Primary And Generated Subsets. The Effects Of The Machine Learning Methods Were Evaluated And Explored The Best Approaches In This Step. Among All Of These Methods, We Found That XGBoost Is The Most Frequent Method To Analyze These Datasets. Besides, Individual Classifiers Are Generated The Highest Result For Information Gain Feature Selection Method. This Analysis Can Be Used As The Complementary Tool To Investigate Hotel Booking Cancellation Dataset More Effectively.